задачи рефераты отчеты
курсовые ргр

 

Главная
Контакты
Рефераты
Курсовые
Отчеты
Задачи
РГР
Лабораторные
Разное
 




Во многих регионах мира прогресс весьма ощутим. Правительство Японии вкладывает 250 млн. долларов в год в увеличение производственной мощности с 40 МВт (1997г.) до 190 МВт (2000г.). Европейские страны проводят собственные программы, стимулом к чему служит потребность в энергетической независимости и экологические соображения. Эти программы в сочетании с экологическими проблемами - такими, как изменение климата - способны значительно ускорить развитие этой отрасли.
Технология изготовления
Солнечные фотоэлектрические системы просты в обращении и не имеют движущихся механизмов, однако сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. В основе действия фотоэлементов лежит физический принцип, при котором электрический ток возникает под воздействием света между двумя полупроводниками с различными электрическими свойствами, находящимися в контакте друг с другом. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль.

Составные элементы солнечных панелей.
Рисунок 3.1 – Составные элементы солнечных панелей.

Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный, а не переменный ток. Он используется во многих простых устройствах, питающихся от батарей. Переменный же ток, напротив, меняет свое направление через регулярные промежутки времени. Именно этот тип электричества поставляют энергопроизводители, он используется для большинства современных приборов и электронных устройств. В простейших системах постоянный ток фотоэлектрических модулей используется напрямую. Там же, где нужен переменный ток, к системе необходимо добавить инвертор, который преобразует постоянный ток в переменный.
3.1.2 Принцип работы фотоэлементов
Современное производство фотоэлементов практически полностью основано на кремнии. Около 80% всех модулей производится с использованием поли- или монокристаллического кремния, а остальные 20% используют аморфный кремний. Кристаллические фотоэлементы - наиболее распространенные, обычно они имеют синий цвет с отблеском. Аморфные, или некристаллические - гладкие на вид и меняют цвет в зависимости от угла зрения. Монокристаллический кремний имеет наилучшую эффективность (около 14%), но он дороже, чем поликристаллический, эффективность которого в среднем составляет 11%. Аморфный кремний широко применяется в небольших приборах, таких как часы и калькуляторы, но его эффективность и долгосрочная стабильность значительно ниже, поэтому он редко применяется в силовых установках.
В опытной разработке находятся несколько типов альтернативных тонкопленочных фотоэлементов, которые в будущем могут завоевать рынок. Наиболее отлаженными из исследуемых в настоящее время тонкопленочных систем являются фотоэлементы из следующих материалов:

  • аморфный кремний (a-Si: H),
  • теллурид/сульфид кадмия (CTS),
  • медно-индиевый или медно-галлиевый диселенид (CIS or CIGS),
  • тонкопленочный кристаллический кремний(c-Si film),
  • нанокристаллические сенсибилизированные красителем электрохимические фотоэлементы (nc-dye).

Девяносто девять процентов современных солнечных элементов изготавливают из кремния (Si), второго по распространенности на Земле вещества, а остальные построены на том же принципе, что и кремниевые солнечные элементы.

Строение и принцип работы солнечного элемента
Рисунок 3.2 – Строение и принцип работы солнечного элемента.

Один слой кремния бомбардируют атомами фосфора, благодаря которым образуется избыток электронов. Получается отрицательно заряженный ("N") слой. На другом слое создается недостаток электронов, он становится положительно заряженным ("P"). Собранные вместе с проводниками, эти две поверхности образуют светочувствительный электронно-дырочный переход. Он называется полупроводником, так как, в отличие от электропровода, проводит ток только в одном направлении - от отрицательного к положительному. При воздействии солнца или другого интенсивного источника света возникает постоянный ток напряжением примерно в 0,5 Вольт. Сила тока (ампер) пропорциональна световой энергии (количеству фотонов). В любой фотоэлектрической системе напряжение почти постоянно, а ток пропорционален размеру фотоэлементов и интенсивности света.

 

9

 

 
   ©zet-1986